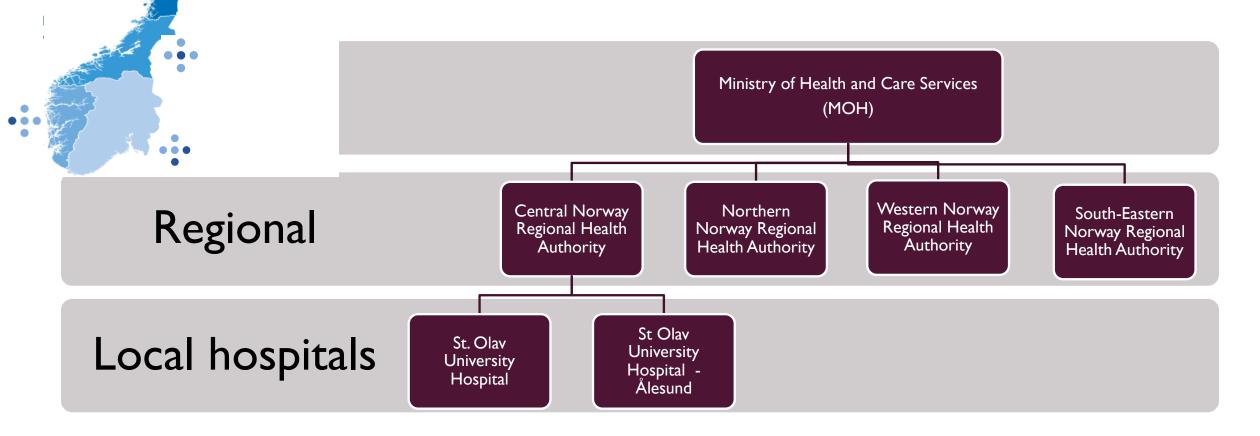
LESSONS LEARNED FROM CONVERTING A CS-137 BLOOD IRRADIATOR



INTRODUCTION

- Kristin Ramberg
- Master in Biophysics and Medical Imaging/Engineering
- Worked as a Medical Physicist since 2005
 - Radiotherapy University Hospital of Northern Norway (2005-2007)
 - Nuclear Medicine St. Olav University Hospital (2008)
 - Head of Medical Physics Department X-ray St. Olav University Hospital (2009-2016)
 - Head Radiation Protection Officer (2005-2016)
- Current position: Project Manager at Sykehusbygg HF Norwegian Hospital Construction Agency

HEALTH ORGANIZATION IN NORWAY

BLOOD IRRADIATORS IN NORWAY

- There were a total of 13 Cs -137 sourced Gammacell irradiators in Norway in 2014
- During 2015 all the equipment was changed into X-ray technology
- The current model at St. Olav University Hospital is Raycell from Theratronix
- The implementation of change was not up to each hospital it was implemented by the Norwegian Radiation Protection Authorities (NRPA) in collaboration with the MOH
- The reason of the replacement was due to national security

ORIGINAL TIME FRAME

- 2005: Gammacell Irradiator
- 2009: Risk analysis regarding fire and security aspect
 - As a result, the Gammacell was moved within an access controlled area in 2010
 - Video surveillance was installed in addition to alarm connected to the security system at the hospital
 - The floor had to be reinforced due to the weight
 - Challenge due to a lot of equipment at the blood bank
- 2017:The expected lifetime of the Gammacell planning of new X-ray system

2017

ACTUAL TIME FRAME

- 2013: The regional health authorities required a security analysis of the Gammacell, which we delivered December 2013
- **2014**:
 - January Demands from the NRPA that measures should be taken according the Gammacell
 - February Corresponding to the letter from the Hospital
 - April Letter from NRPA that using the equipment was OK as long as we started the process of changing equipment during 2014
 - May Info gotten from one supplier, specification received from Western Norway Regional Health Authority
 - June Application for an exemption for the replacement of the irradiator until 31.12.2016 sent to the Ministry of Health (we needed that from 1st of January 2015) Application dismissed and the change had to be done no later than 1st of July 2015
 - September October Working with the requirement specification for the new equipment, and sending it
- **2015**:
 - I Ith of June The Gammacell was moved out of the Hospital
 - I 3th of June The new Raycell was ready to use

THE PROCUREMENT PROCESS

- The procurement process was led by the Central Norway Regional Health Authority
- They wanted to go through the process themselves, but the hospitals was not satisfied with this
- My hospital contributed with key personnel into the procurement group (The group: Bioengineers as well as a physician, a medical engineer and a medical physicist/radiation protection officer)
- We got requirement specifications from other health regions
- These did not entirely satisfy our demands, but it was very helpful and gave us a good starting point
- We added some key points which focused on
 - Radiation time Uniformity High reliability Training
 - It saved us a lot of time

THE CHANGE

- 3 days
 - Removing the old equipment
 - Setting up the new one
 - Training the staff
- The staff is very pleased with their new equipment
- It was no need to employ additional staff
- Workflow is easier they could remove access control

- A "super user" is now in charge of further training
 - The Hospital always demands proper training in the process of purchasing new equipment
- The Medthech engineers was also trained
 - Though not for annual service we still need the firm's service engineer
 - The local supplier in Norway have two engineers which is trained for this equipment, so when the guarantee time has ended we can use them

ECONOMICS

- The equipment probably cost more in Norway than in other countries
- We were told that the total cost was ~ US \$ 480.000, including the disposal
 - The contract shows US \$ 541.000 for each equipment included 10 % discount due to quantity order
- At the time it was large fluctuations in the currency market (25 % more expensive with todays currency)
- Additional cost due to infrastructure ~ US \$ (90.000 117.000)
- Our funding was difficult we were told that it would be taken care of, but in the end our hospital had to pay for it our selves
 - Challenging for the hospitals and affect the planned investment for the next years
- Expenses for service agreement with the vendor (~35.000 US \$)

UNFORESEEN EXPENSES DUE TO INFRASTRUCTURE

- Electrical requirements
 - We had to install a 400 V TN-S Supply of three-phase 25 A
- Water requirements
 - We had to install a water cooling system

Electricity Requirements

Single-phase 60 Hz, 60A typically at 240V Three-phase 50 Hz, 25A typically at 400V

Photon Energy

160 KV (60-80 keV average)

Water Requirements

Flow Rate:	>10 L/min (2.6 US gal/min)
Potable Quality:	≤ 7 grains/US gal hardness
Pressure:	
Temperature:	10-25 °C (50-77 °F)

ADDITIONAL INFO – GOOD TO KNOW

- A big panel in the back and two side panels that will have to be opened during service
- You will need a big floor space
 - Width: (1450 + 2*800) mm = 3050 mm
 - Depth:: (800 + 1450/2)mm = 1525 mm
 - And the room for a service person...
- The equipment we have is mounted on wheels it is possible to move it
- The vendor recommend UPS

Source: www.theratronics.ca

AFTER 3 YEARS USE

- The users are happy with the change
- The hospital deliver irradiated blood to three other hospitals in the region
- The local MTA engineers are happy they had som trouble with the old machine
- Only small problems have been registered in the engineers service system:
 - Hard to start after power stop
 - General cleaning (algaee) must be used more frequently than recommended
 - Refill with destilled water not necessery with deionisied water (RO-water)
 - Empty the sieve regularly after cleansing for algaee

END OF LIFE MANAGEMENT

- Disposal of the source was a part of the demands in the purchasing process
- In Norway we are not allowed to buy sources from vendors that do not accept to take care of the disposal
- We had to pay the expense though and that was approximately 75.000 US \$ now the vendor says it will be approximately 175 000 US \$
- Due to the good planning and especially good help from the vendor this process went very well

SOME PICTURES

SOME PICTURES

SOME PICTURES

CONCLUSION

- Involve key personnel at the hospital
- Graded information? Provide key personnel the necessary information
- Start funding process as early as possible and contact "local" suppliers for prices
- Clarify where the new equipment shall be placed and ensure that the electronics and cooling water supply meets the needs of the blood irradiator
- Everything is manageable if it is planned thoroughly