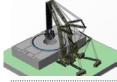

The status of different SMR technologies and the role of the IAEA to support its Member States in SMR Technology Development

Frederik Reitsma

Team Leader (SMR Technology Development) Nuclear Power Technology Development Section Division of Nuclear Power, Department of Nuclear Energy

Outline

SMR: definition & rationale of developments


Advanced Reactors to produce up to 300 MW(e), built in factories and transported as modules to sites for installation as demand arises.

A nuclear option to meet the need for flexible power generation for wider range of users and applications

Economic

- Lower Upfront capital cost
- Economy of serial production

Modularization

- Multi-module
- Modular Construction

Flexible Application

- Remote regions
- Small grids

Smaller footprint

Reduced Emergency
 planning zone

Replacement for aging fossil-fired plants

Potential Hybrid Energy System **Better Affordability**

Shorter construction time

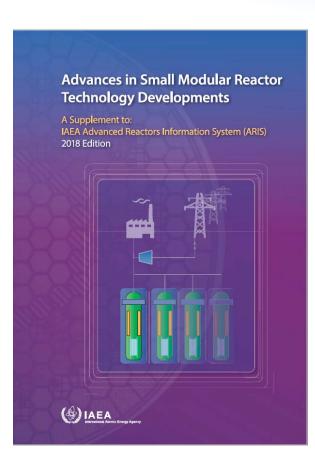
Wider range of Users

Site flexibility

Reduced CO₂ production

Integration with Renewables

SMRs for immediate & near term deployment


- SMR designs overview
- Selection of SMRs considered ready for near term deployment

IAEA SMR Booklet 2018 Edition

Main Features

- Design description and main features of 56 SMR designs
- SMRs are categorized in six(06) types based on coolant type/neutron spectrum:
 - Land Based WCRs
 - Marine Based WCRs
 - HTGRs
 - Fast Reactors
 - > MSRs
 - > Others
- MANY designs not included / not submitted

SMRs Under Construction for Immediate Deployment – the front runners ...

Country	Reactor Model	Output (MWe)	Designer	Number of units	Site, Plant ID, and unit #	Startup Commissioning
Argentina	CAREM-25	27	CNEA	1	Near the Atucha-2 site	2022
China	HTR-PM	210	INET, Tsinghua	2 mods, 1 turbine	Shidaowan unit-1	2019
Russian Federation	KLT-40S <i>(ship-borne)</i>	70	OKBM Afrikantov	2 mod x 35 MWe	Akademik Lomonosov units 1 & 2	2019
	RITM-200 <i>(Icebreaker)</i>	50	OKBM Afrikantov		RITM-200 nuclear-propelled icebreaker ship	2019

SMRs: Under Construction

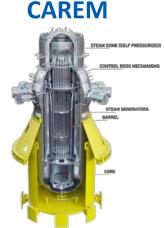


Image Courtesy of CNEA, Argentina

Under Construction

Integral PWR type SMR

Naturally circulation

- 30 MW(e) / 100 MW(th)
- Core Outlet Temp: 326°C
- Fuel Enrichment: 3.1% UO₂
- In-vessel control rod drive mechanisms
- Self-pressurized system
- Pressure suppression containment system
- First Criticality: 2022

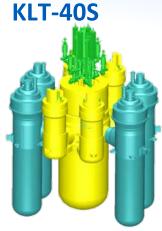


Image Courtesy of Afrikantov, Russia

Under Commissioning

Floating PWR type SMR

Forced circulation

- 35 MW(e) / 150 MW(th)
- Core Outlet Temp: 316°C
- Fuel Enrichment: 18.6% UO₂
- Floating power unit for cogeneration of heat and electricity; onsite refuelling not required; spent fuel take back to the supplier
- Commercial Start-up: 2019-20

HTR-PM

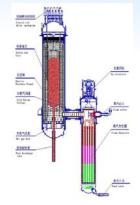


Image Courtesy of Tsinghua University, China

Under Construction

HTGR type SMR

Forced circulation

- 210 MW(e) / 2x250 MW(th)
- Core Outlet Temp: 750°C
- Fuel Enrichment: 8.5% TRISO coated particle fuel
- Inherent safety, no need for offsite safety measures
- Multiple reactor modules can be coupled with single steam turbine
- Commercial operation: 2019
- The HTR-PM 600 (6 modules) are under design and several potential sites identified

SMRs: Near Term Deployable

NuScale

Image Courtesy of NuScale Power, USA

Under regulatory review Integral PWR type SMR

Naturally circulation

- 50 MW(e) / 160 MW(th) per module - upgraded to 60 MW(e)
- Core Outlet Temp: 314°C
- Fuel Enrichment: <4.95% UO₂
- 0.5g peak ground accelerations
- Modules per plant: 12
- Containment vessel immersed in reactor pool that provide unlimited coping time for core cooling
- Multi-purpose Energy use: Electricity and process heat applications

Image Courtesy of KAERI, Republic of Korea

Standard design approval (2012)

Integral PWR type SMR

Forced circulation

- 100 MW(e) / 330 MW(th)
- Core Outlet Temp: 323°C
- Fuel Enrichment: <5% UO₂
- Coupling with desalination and process heat application
- Pre-project engineering agreement between Korea and Kingdom of Saudi Arabia for the deployment of SMART in the Gulf country
- Design update (increased power and more passive safety features) to be submitted for design approval

ACP-100

Image Courtesy of CNNC(NPIC/CNPE), China

Basic Design Completed

Integral PWR type SMR

Forced circulation

- 125 MW(e) / 385 MW(th)
- Core Outlet Temp: 319°C
- Fuel Enrichment: <4.95% UO₂
- In-vessel control rod drive mechanisms
- nuclear island underground
- Preliminary safety assessment report (PSAR) finished
- An industrial demonstration plant with one 385 MW(t) unit is planned in Hainan Province
- IAEA conducted a generic safety review

SMRs: Generation-IV Designs

SEALER

Image Courtesy of LeadCold, Sweden

Conceptual Design Small lead-cooled battery

Forced circulation

- 3 MW(e) / 8 MW(th)
- Core Outlet Temp: 432°C
- Fuel Enrichment: <20% UO₂
- Non-pressurized
- The primary market for SEALER is constituted by Arctic communities and mining operations which today depend on diesel generators for production of power and heat

EM2

Image Courtesy of General Atomics, USA

Conceptual Design

Modular high temperature gascooled fast reactor

Forced cooling with helium

- 265 MW(e) / 500 MW(th)
- Core Outlet Temp: 850°C
- Fuel Enrichment: 14.5% UO₂
- Silicon carbide composite cladding and fission gas collection system
- Use a combined power conversion cycle - direct helium Brayton cycle and a Rankine bottoming cycle
- Modules per plant: 4

IMSR

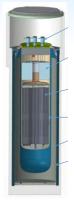


Image Courtesy of Terrestrial Energy Inc., Canada

Conceptual / Basic Design

Molten Salt Reactor

Forced circulation

- 190 MW(e) / 400 MW(th) per module
- Core Outlet Temp: ~700°C
- Fuel Enrichment: < 5%
- Completely sealed reactor vessel with integrated pumps, heat exchangers and shutdown rods; core-unit is replaced completely as a single unit every seven years
- Conceptual design complete basic engineering in progress

Water Cooled SMR Designs for district heating

DHR-400

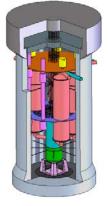


Image Courtesy of CNNC, China

Basic Design

Pool Type SMR

Forced circulation

- 0 MW(e) /400 MW(th)
- Core Outlet Temp: 98°C
- Fuel Enrichment: <5% UO₂
- Designed to replace traditional coal plants for district heating
- Multi-purpose applications including district heating, sea water desalination & radioisotope production
- Seeking a construction license in 2019
- First plant that is expected to be built in Xudapu, Liaoning, China.

RUTA-70

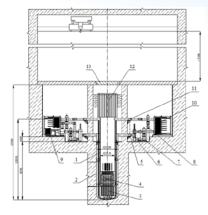
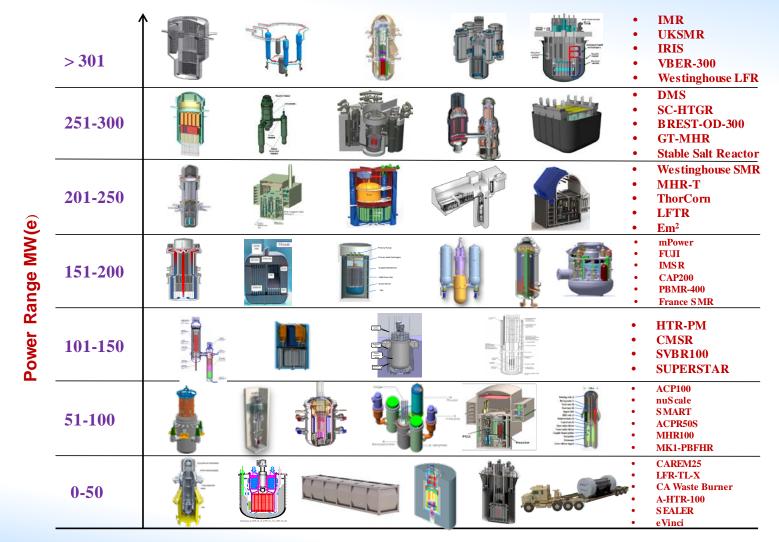


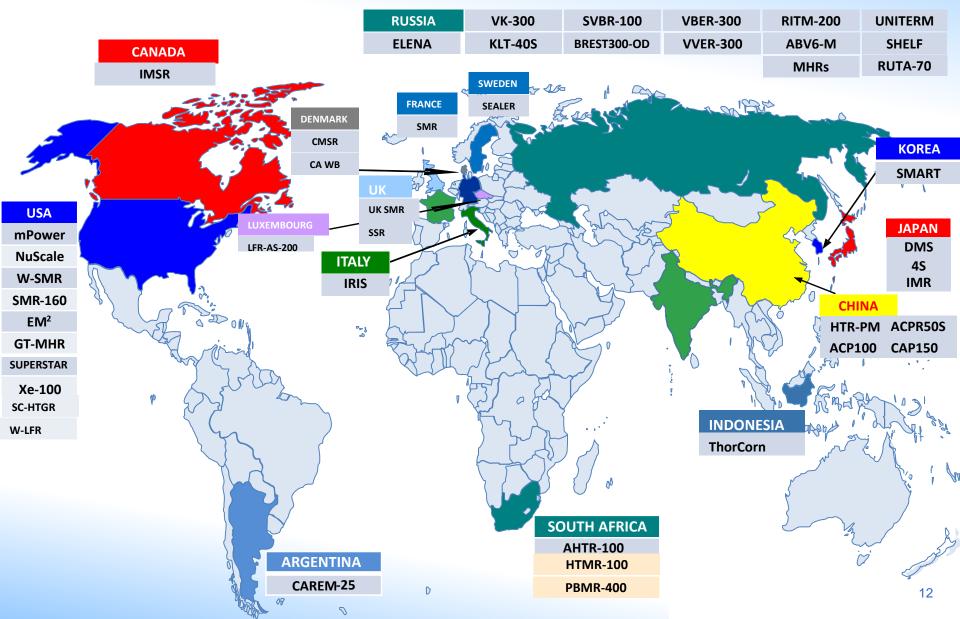
Image Courtesy of , NIKIET, Russian Federation


Conceptual Design

Pool type SMR

Natural / Forced circulation

- 0 MW(e) / 70 MW(th)
- Core Outlet Temp: 102°C
- Fuel Enrichment: 3% UO₂
- Designed for low temperature process heat, coupling with desalination system, radioisotope production or other applications


SMR Designs Based on Power Range

Reactor Designs

SMR Technology Development

IAEA

- Some Technology Developer Member State activities
- New-comers interest

Status and major accomplishment in Technology Developer Countries

Countries	Recent Milestone
Argentina	CAREM25 is in advanced stage of construction. Aiming for fuel loading & start-up commissioning in 2019
Canada	CNSC is performing design reviews for several innovative SMR designs, mostly non-water cooled, including molten salt reactors (MSR)
China	 HTR-PM is in advanced stage of construction. Commissioning expected in 2018. ACP100 completed IAEA generic reactor safety review. CNNC plans to build ACP100 demo-plant in Hainan Provence in the site where NPPs are already in operation. China has 3 floating SMR designs (ACP100S, ACPR50S and CAP-F)
France	• Propose a new French SMR design (Consortium of TechnicAtome, CEA, EDF, Naval Group, Investir L`Avenir)
Republic of Korea	 SMART (100 MWe) by KAERI certified in 2012. SMART undertakes a pre-project engineering in Saudi Arabia, for near-term construction of 2 units. Updated design with increased power and more passive safety features developed New design will be submitted for certification in Korea in parallel with KSA licensing application
Russian Federation	 Akademik Lomonosov floating NPP with 2 modules of KLT40S is in advanced stage of construction and commissioning. Aiming for commissioning in 2019. AKME Engineering will develop a deployment plan for SVBR100, a eutectic lead bismuth cooled, fast reactor.
United Kingdom	 Rolls-Royce recently introduced UK-SMR, a 450 MW(e) PWR-based design; many organizations in the UK work on SMR design, manufacturing & supply chain preparation Identifying <i>potential</i> sites for future deployment of SMR; Government supporting 8 advanced designs (Phase I) to determine its feasibility
United States of America	 The US-NRC has started design review for NuScale (600 MW(e) from 12 modules) from April 2017, aiming for FOAK plant deployment in Idaho Falls. TVA submitted early site permit (ESP) for Clinch River site, design is still open.

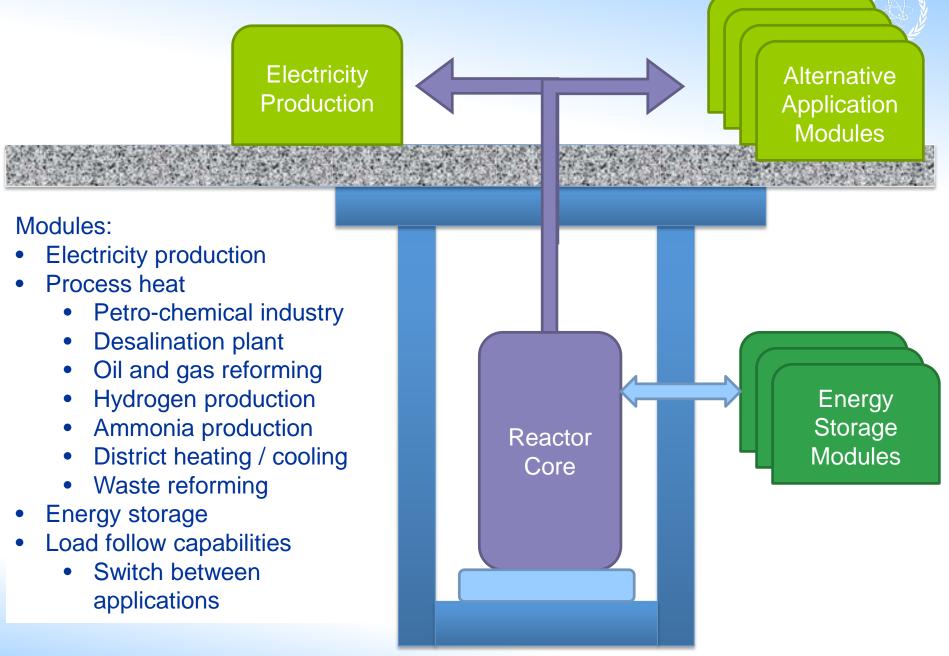
Status and major accomplishment in Embarking Countries

Countries	Recent Milestone
Saudi Arabia	 Vision 2030 → National Transformation Program 2020: Saudi National Atomic Energy Project: K.A.CARE performs a PPE with KAERI to prepare a construction of 2 units of SMART An MOU between K.A.CARE and CNNC on HTGR development/deployment in KSA
Indonesia	 Through an open-bidding, an experimental 10 MW(th) HTR-type SMR was selected in March 2015 for a concept design aiming for a deployment in mid 2020s Site: R&D Complex in Serpong where a 30 MW(th) research reactor in operation MoU with INET and considering commercial deployment in future in the eastern region
Jordan	Jordan decided to deploy a SMR and is down-selecting on 3 possible designs / vendors
Poland	 HTGR for process heat application to be implemented in parallel to large LWRs 10 MW(th) experimental HTGR at NCBJ proposed possibly with EU cooperation
Tunisia	 STEG, the National Electricity and Gas Company is active in performing technology assessment for near-term deployable water-cooled SMRs
Kenya	 Requested support on human capacity building for Reactor Technology Assessment that covers SMRs through IAEA-TC Project

Status of SMR pre-licensing in Canada

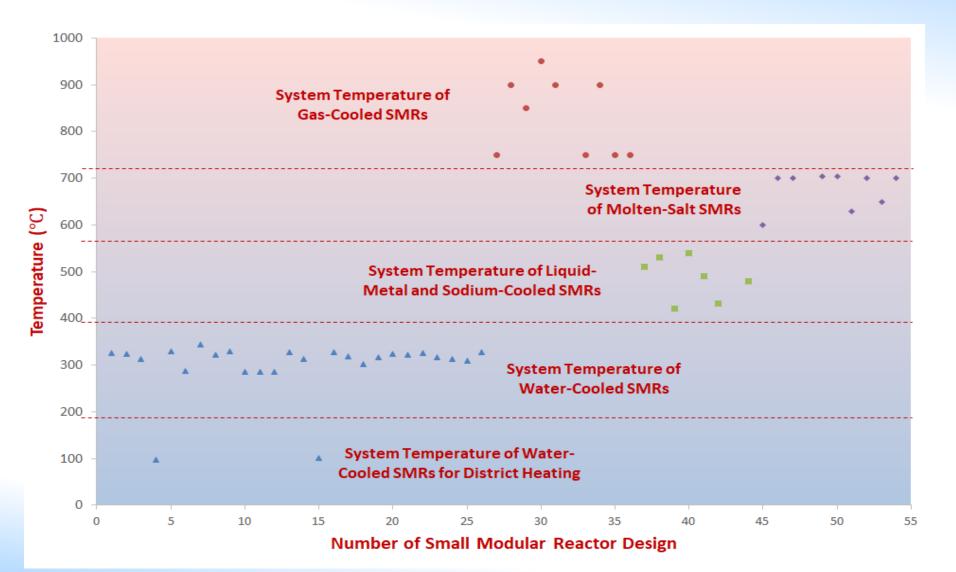
Vendor	Name / cooling type	(MWe)	Applied for	Review start date	Status
	IMSR		Phase 1	April 2016	Phase 1 complete
Terrestrial Energy Inc.	Integral Molten Salt Reactor	200	Phase 2	December 2018	Phase 2 assessment in progress
NuScale Power, LLC	NuScale Integral Pressurized Water Reactor	50	Phase 2*	April 1, 2019	Service agreement signed. Assessment pending
Ultra Safe Nuclear			Phase 1	December 2016	Phase 1 complete
Corporation / Global First Power	MMR-5 and MMR-10 High Temperature Gas	5-10	Phase 2	Pending	PHASE 2 Service Agreement in place – Project start pending
Westinghouse Electric Company, LLC	eVinci Micro Reactor Solid core and heat pipes	up to 25 MWe	Phase 2*	Pending early 2019	Service agreement under development
LeadCold Nuclear Inc.	SEALER Molten Lead	3	Phase 1	January 2017	Phase 1 on hold at vendor's request
Advanced Reactor Concepts Ltd.	ARC-100 Liquid Sodium	100	Phase 1	Fall 2017	Assessment in progress
URENCO	U-Battery High-Temperature Gas	4	Phase 1	To be determined	Service agreement under development
Moltex Energy	Moltex Energy Stable Salt Reactor Molten Salt	300	Series Phase 1 and 2	December 2017	Phase 1 assessment in progress
SMR, LLC. (A Holtec International Company)	SMR-160 Pressurized Light Water	160	Phase 1	July 2018	Assessment in progress
StarCore Nuclear	StarCore Module High-Temperature Gas	10	Series Phase 1 and 2	To be determined	Service agreement under development

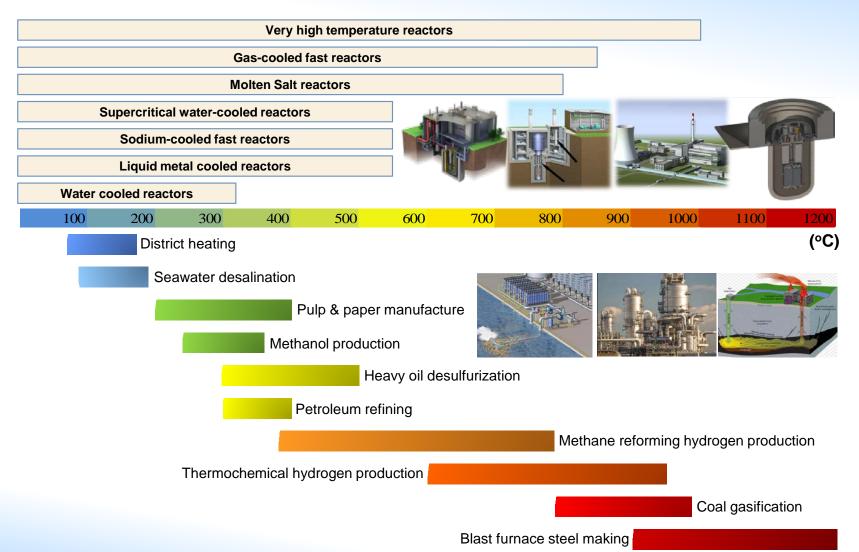
Cogeneration and Integration with Renewables


- Advantages of cogeneration
- A generic flexible cogeneration configuration
- Hybrid systems / potential for integration with renewables

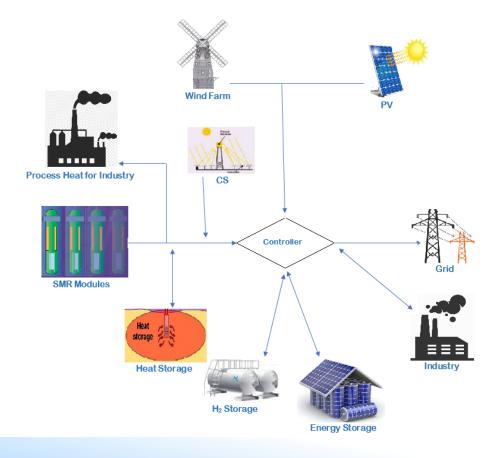
Advantages of Cogeneration

Improve economics of NPPs (Better Revenue due to):


- Better utilization of fuel
- Sharing of infrastructures
- Production of more than one product
- Improve NPP efficiency (Energy saving):
 - Recycling of waste heat
 - Accommodate seasonal variations of electricity demand
 - Rationalization of power production (use of off-peak)
 - Improve the value of heat (use low-quality steam)
 - Meet demand for energy-intensive processes (desalination, hydrogen, etc.).
- Sustain the environment (keep Clean):
 - Reduce use of fossil fuel
 - Reduce Impacts


SMR Designs Based on Core Exit Temperature

Non Electric Applications of SMRs

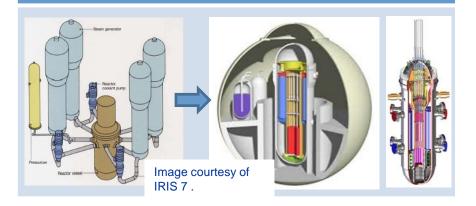


Role of SMRs in Climate Change

SMR Renewables Hybrid Energy System to Reduce GHG Emission

TECDOC on Options to Enhance Energy Supply Security using Hybrid Energy Systems based on SMR – Synergizing Nuclear and Renewables; being finalised

> Exploring Synergies between Nuclear and Renewables: IAEA Meeting Discusses Options for Decarbonizing Energy Production and Cogeneration


SMR design characteristics

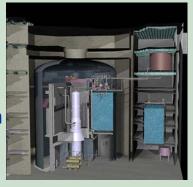
- Characteristics
- Site considerations / EPZ
- SMR characteristics that may be important to nuclear security discussion

Salient Design Characteristics

Simplification by Modularization and System Integration

Multi-module Plant Layout Configuration

Underground construction for enhanced security and seismic


Image courtesy of BWX Technology, Inc.

Enhanced Safety Performance through Passive System

- Enhanced severe accident features
- Passive containment cooling system
- Pressure suppression containment

Image courtesy of BWX Technology, Inc.

SMR Key Design Features: Modular

IAEA

- Multi modules configuration
 - Two or more modules located in one location/reactor building and controlled by single control room
 - → reduced staff
 - → new approach for I&C system

Progress made in applying a graded approach

- Nuclear Regulatory **Commission staff** agreed with the **Tennessee Valley** Authority that scalable emergency planning zones (EPZs) for small modular reactors are feasible
- ...The preliminary finding

US regulators discuss smaller SMR emergency zones

28 August 2018

< Share

CLARIFICATION: NRC staff have concluded the TVA methodology can be used in the future to determine if a reduced emergency planning zones is justified, and has not made a decision on EPZ criteria for small modular reactors.

The US Nuclear Regulatory Commission (NRC) has concluded that Tennessee Valley Authority's (TVA's) methodology can be used in the future to determine if a reduced emergency planning zone is justified for small modular reactors, a spokesman for the Commission told *World Nuclear News* today. It has not yet agreed that an EPZ around small modular reactors can be scaled to reflect their reduced risks rather than the mandatory ten-mile EPZ required for the USA's current light-water reactor fleet.

Characteristics of SMRs that may have an impact on nuclear security considerations....

- SMR interest in many IAEA Member States, also from many new-comer countries planning to deploy NPP for the first time.
- Modular designs may require construction or installation in close proximity with operating modules
- Fuel types / cycles
 - Increased enrichment (many designs)
 - alternative fuel cycles (waste burners)
 - On-line refueling / lifetime core
- Underground installations / Floating platforms / transportable SMRs
- Factory manufacturing and transport of completed reactor or submodules
- Control room staffing for multi-module SMR Plants (one operator may operate more than one reactor module)
- Siting:
 - Smaller sites (reduced EPZ / reduced site boundary)
 - May replace older coal power stations / close to cities
 - Remote areas, northern territories, islands
 - Enhanced potential for non-electric applications so SMRs may be installed close to industrial heat users
- Many designs with enhanced safety characteristics often relying on inherent safety characteristics and/or passive safety systems

Advantages and challenges

Advantages, Issues & Challenges

Technology Issues

- Shorter construction period (modularization)
- Potential for enhanced safety and reliability
- Design simplicity
- Suitability for non-electric application (desalination, etc.).
- Replacement for aging fossil plants, reducing GHG emissions

Non-Techno Issues

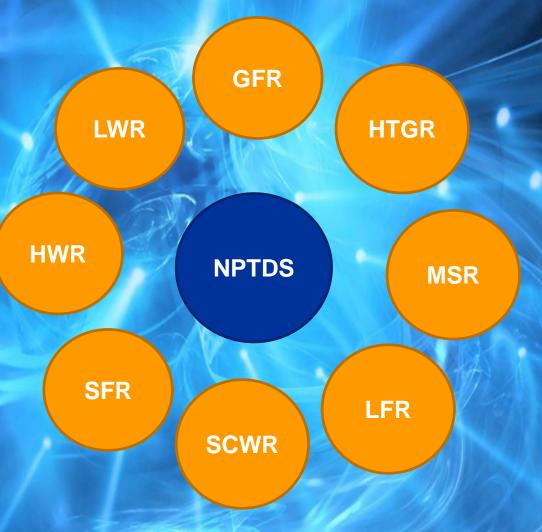
- Fitness for smaller electricity grids
- Options to match demand growth by incremental capacity increase
- Site flexibility
- Reduced emergency planning zone
- Lower upfront capital cost (better affordability)
- Easier financing scheme

Technology Issues

- Licensability (FOAK designs)
- Non-LWR technologies
- Operability and Maintainability
- Staffing for multi-module plant; Human factor engineering;
- Supply Chain for multi-modules
- Advanced R&D needs

Non-Techno Issues

- Economic competitiveness
- Plant cost estimate
- Regulatory infrastructure
- Availability of design for newcomers
- Physical Security
- Post Fukushima action items on institutional issues and public acceptance



IAEA Activities

- Technology Development
- Main areas and mechanisms available
- Coordinated Research Projects
- Publications
- Future needs
- Toolkits, Portals and Training Simulators

NPTDS Nuclear Power Technology Development Section

- Department of Energy
 Division Nuclear Power
 NPTDS currently works on all advanced and innovative reactor technologies
 Provides support to
 - member states on all issues related to technology

Programme Activities: TWGs, Conferences, CRPs, International Experts Meetings, TMs

International Technical Working Group on SMR

- To advice and support IAEA programmatic planning and implementation in areas related to technology development, design, deployment and economics of SMRs
- 14 Member States and two International Organizations: European Commission and OECD-NEA as invited observers:

- More countries potentially to join: *Canada, Japan, Saudi Arabia, South Africa, Tunisia and Ukraine*
- Three technical subgroups established:
 - SG-1: Development of Generic Users Requirements and Criteria (GURC)
 - **SG-2:** Research, Technology Development and Innovation; Codes and Standards
 - **SG-3:** Industrialization, design engineering, testing, manufacturing, supply chain, and construction technology
- TWG will also address specifically SMR for Non-Electric Applications and coupling with renewables
- 1st TWG Meeting for SMR held on 23 26 April 2018 in Vienna
- 2nd Meeting scheduled for 8 11 July 2019 in Vienna

Coordinated Research Ppojects relevant to SMRs

- High Temperature Gas Cooled Reactor Physics, Thermal-Hydraulics and Depletion Uncertainty Analysis
- 2. High Temperature Gas Cooled Reactors Safety Design
- 3. Development of Approaches, Methods and Criteria for Determining Technical Basis for EPZ for SMR Deployment
- 4. Design and Performance Assessment of Passive Engineered Safety Features in Advanced SMRs.

Recent Publications and Forthcoming Ones IAEA TECDOC SERIES IAEA TECDOC SERIES IAEA-TECDOC-1752 **Deployment Indicators** Progress in Methodologies for for Small Modular Reactors **IAEA Nuclear Energy Series** the Assessment of Passive No. NP-T-3.19 IAFA-TECDOC-17XX Methodology, Analysis of Key Factors and Case Studies Safety System Reliability in Advances in Small Modular Reactor **Technology Developments** Advanced Reactors Instrumentation and **Design Safety Considerations for Control Systems** Results from the Coordinated Research Water-cooled Small Modular for Advanced Small 2018 Edition Project on Development of Advanced Modular Reactors Reactors incorporating Lessons Methodologies for the Assessment of learned from the Fukushima Passive Safety Systems Performance in Advanced Reactors Daiichi Accident (A) IAEA

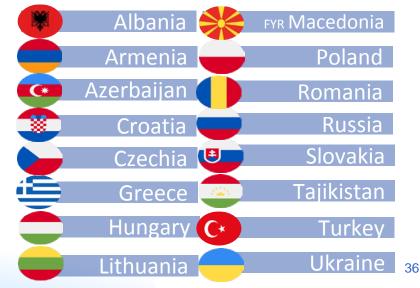
• NES Technology Roadmap for Small Modul Reactor Deployment

() IAEA

(IAEA

 TECDOC: Status of Approaches for Environmental Impact Assessment for SMR Deployment

() IAEA


 TECDOC: Options to Enhance Energy Supply Security using Hybrid Energy Systems

Regional TC EU Project – Facilitating Capacity Building for Small Modular Reactors: Technology Developments, Safety Assessment, Licensing and Utilization.

- Member states in Europe / Eurasia area that plan to initiate or to expand their nuclear energy programme have identified the need to increase their capacity
 - to make knowledgeable decisions...
 - particularly to become capable to identify and perform technical assessments for SMRs commercially available for near term deployment.
- Overall objective to contribute to a new way to meet the European demand for clean and emission-free flexible sources of electricity.
- Technically aspects supported by NE and NS Departments
- A two-year project (2018/19)
- 3 Workshops in 2018: SMR technology (x2) and on Infrastructure, economic and financing aspects
- In 2019 activities on Non-electric applications, IAEA technology assessment, Regulatory framework and licensing issues; Siting and Design Specific Issues

RER 2/014 Participants / beneficiaries

- The IAEA is acting as the secretariat for the SMR Regulators' Forum
- Established working groups:
 - Graded approach; Defence in Depth; Emergency planning zone
 - Report available at: <u>https://www.iaea.org/topics/small-modular-</u> reactors/smr-regulators-forum
 - Current topics: Licensing issues; Design and Safety; Manufacturing, Commissioning and Operations
- Other NS activities to address MS needs and requests is being discussed in a newly formed joint working group on SMRs:
 - Technology-neutral safety approach for new reactor designs
 - Activities to consider transportable SMRs
 - Security-related issues
 - Coordination and one-house approach

Summary

- Many SMRs under development …
- Wide variety of technologies under consideration
- Only 3 SMRs under construction; only few more with specific deployment plans
- Technology readiness differ substantially
- Many IAEA member States interested

IAEA is engaged to support Member States interested in SMR Technology Development and Deployment

International Conference on Climate Change and the Role of Nuclear Power

7-11 October 2019, Vienna, Austria

iaea.org/Atoms4Climate

Atoms4Climate@iaea.org

#Atoms4Climate

Organized by the

IAEA International Atomic Energy Age Atoms for Peace and Developm

#Atoms4Climate CH-275

For inquiries on SMR, please contact:

Mr Frederik Reitsma Team Leader: SMR Technology Development

IAEA Nuclear Power Technology Development Section

F.Reitsma@iaea.org

Thank you!

Design Features and Deployment Status of Water Cooled SMRs (Land Based)

Design	Output MW(e)	Туре	Designers	Country	Status				
WATER COOLED SMALL MODULAR REACTORS (LAND BASED)									
CAREM	30	PWR	CNEA	Argentina	Under construction				
ACP100	100	PWR	CNNC	China	Basic Design				
CAP200	150/200	PWR	CGNPC	China	Conceptual Design				
DHR400	(District Heating)	LWR(pool type)	CNNC	China	Basic Design				
IRIS	335	PWR	IRIS Consortium	Multiple Countries	Conceptual Design				
DMS	300	BWR	Hitachi GE	Japan	Basic Design				
IMR	350	PWR	MHI	Japan	Conceptual Design				
French-SMR	170	PWR	French Consortium	France	Conceptual Design				
SMART	100	PWR	KAERI	Republic of Korea	Certified Design				
ELENA	68 kW(e)	PWR	National Research Centre "Kurchatov Institute"	Russian Federation	Conceptual Design				
KARAT-45/100	45/100	BWR	NIKIET	Russian Federation	Conceptual Design				
RITM-200	50 × 2	PWR	OKBM Afrikantov	Russian Federation	Under Development				
RUTA-70	70 MW(t)	PWR	NIKIET	Russian Federation	Conceptual Design				
UNITHERM	6.6	PWR	NIKIET	Russian Federation	Conceptual Design				
VK-300	250	BWR	NIKIET	Russian Federation	Detailed Design				
UK-SMR	443	PWR	Rolls-Royce and Partners	United Kingdom	Mature Concept				
mPower	195 × 2	PWR	BWX Technologies	United States of America	Under Development				
NuScale	50 × 12	PWR	NuScale Power	United States of America	Under Development				
SMR-160	160	PWR	Holtec International	United States of America	Preliminary Design				
W-SMR	225	PWR	Westinghouse	United States of America	Conceptual Design				

Design Features and Deployment Status of Water Cooled SMRs (Marine Based)

Design	Output MW(e)	Туре	Designers	Country	Status			
WATER COOLED SMALL MODULAR REACTORS (MARINE BASED)								
ACPR50S	60	PWR	CGNPC	China	Preliminary Design			
ABV-6E	6-9	Floating PWR	OKBM Afrikantov	Russian Federation	Final design			
KLT-40S	70	Floating PWR	OKBM Afrikantov	Russian Federation	Under construction			
RITM-200M	50 × 2	Floating PWR	OKBM Afrikantov	Russian Federation	Under Development			
SHELF	6.4	Immersed NPP	NIKIET	Russian Federation	Detailed Design			
VBER-300	325	Floating NPP	OKBM Afrikantov	Russian Federation	Licensing Stage			

Design Features and Deployment Status of Gas Cooled SMRs

HIGH TEMPERATURE GAS COOLED SMALL MODULAR REACTORS

Design	Output MW(e)	Туре	Designers	Country	Status
HTR-PM	210	HTGR	INET, Tsinghua University	China	Under Construction
GTHTR300	300	HTGR	JAEA	Japan	Basic Design
GT-MHR	285	HTGR	OKBM Afrikantov	Russian Federation	Preliminary Design
MHR-T	205.5x4	HTGR	OKBM Afrikantov	Russian Federation	Conceptual Design
MHR-100	25-87	HTGR	OKBM Afrikantov	Russian Federation	Conceptual Design
A-HTR-100	50	HTGR	Eskom Holdings SOC Ltd.	South Africa	Conceptual Design
HTMR-100	35	HTGR	Steenkampskraal Thorium Limited	South Africa	Conceptual Design
PBMR-400	165	HTGR	PBMR SOC Ltd	South Africa	Preliminary Design
SC-HTGR	272	HTGR	AREVA	United States of America	Conceptual Design
Xe-100	35	HTGR	X-energy LLC	United States of America	Conceptual Design

Design Features and Deployment Status of Fast Neutron Spectrum SMRs

FAST NEUTRON SPECTRUM SMALL MODULAR REACTORS

Design	Output MW(e)	Туре	Designers	Country	Status
48	10	LMFR	Toshiba Corporation	Japan	Detailed Design
LFR-AS-200	200	LMFR	Hydromine Nuclear Energy	Luxembourg	Preliminary Design
LFR-TL-X	5~20	LMFR	Hydromine Nuclear Energy	Luxembourg	Conceptual Design
BREST-OD-300	300	LMFR	NIKIET	Russian Federation	Detailed Design
SVBR-100	100	LMFR	JSC AKME Engineering	Russian Federation	Detailed Design
SEALER	3	Small Lead Cooled	LeadCold	Sweden	Conceptual Design
EM ²	265	GMFR	General Atomics	United States of America	Conceptual Design
SUPERSTAR	120	LMFR	Argonne National Laboratory	United States of America	Conceptual Design
WLFR	450	LFR	Westinghouse	United States of America	Conceptual Design

Design Features and Deployment Status of Molten Salt SMRs

MOLTEN SALT SMALL MODULAR REACTORS							
Design	Design Output Type MW(e)		Designers	Country	Status		
IMSR	190	MSR	Terrestrial Energy	Canada	Basic Design		
CMSR	100-115	MSR	Seaborg Technologies	Denmark	Conceptual Design		
CA Waste Burner	20	MSR	Copenhagen Atomics	Denmark	Conceptual Design		
ThorCon	250	MSR	Martingale	International Consortium	Basic Design		
FUJI	200	MSR	International Thorium Molten- Salt Forum: ITMSF	Japan	Experimental Phase		
Stable Salt Reactor	37.5×8	MSR	Moltex Energy	United Kingdom	Conceptual Design		
Stable Salt Reactor	300~900	MSR	Moltex Energy	United Kingdom	Pre-Conceptual Design		
LFTR	250	MSR	Flibe Energy	United States of America	Conceptual Design		
Mk1 PB-FHR	100	MSR	University of California, Berkeley	United States of America	Pre-Conceptual Design		
MCSFR	50	MSR	Elysium Industries	USA and Canada	Conceptual Design		