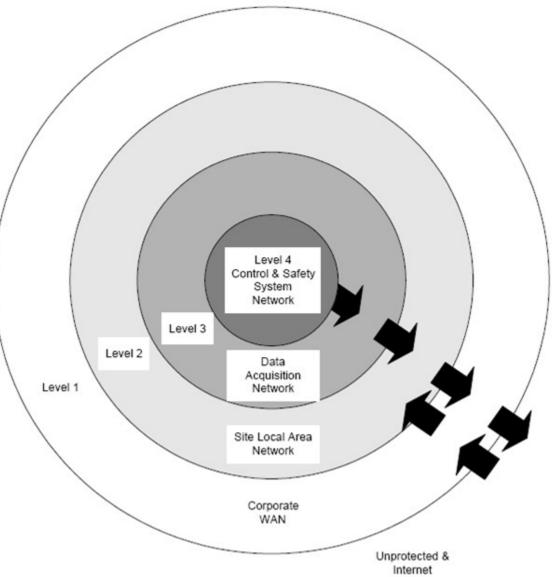
Cyber Insider Threat Mitigation in Industrial Environments

Sultan Al Owais

Problem Definition

- Cyber is the protection against unintended consequences of an engineered system through adversarial action.
- Systems are the combination of man, machine, measures, and environment.
- Security of industrial systems and critical infrastructure lags, definitionally, behind state of the art
- OT more difficult to reach and generally isolated to some degree, therefore harder to exploit.
- Motivated adversaries must direct their efforts to subverting 1) insiders and 2) supply chains

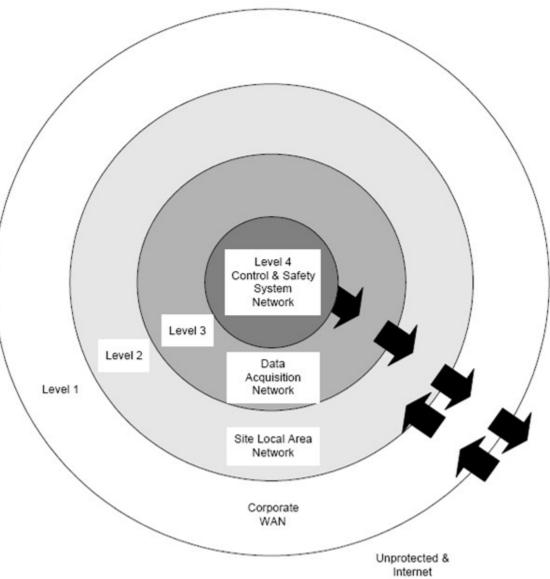
Cyber to Physical Security Comparison


- Traditional physical security measures contribute greatly to cyber threat mitigation programs
 - Personnel Security
 - Fitness for Duty
 - Management Observation
 - Perimeter Security
 - Physical Access Control

- ... I use the word 'traditional' because cyber brings unique challenges
 - Asymmetrical Impact: The damage possible is not proportional to the number of adversaries
 - Non-Obvious Harm: Malicious actions may remain undetected due to the
 - Complexity and non-intuitiveness of computerized systems

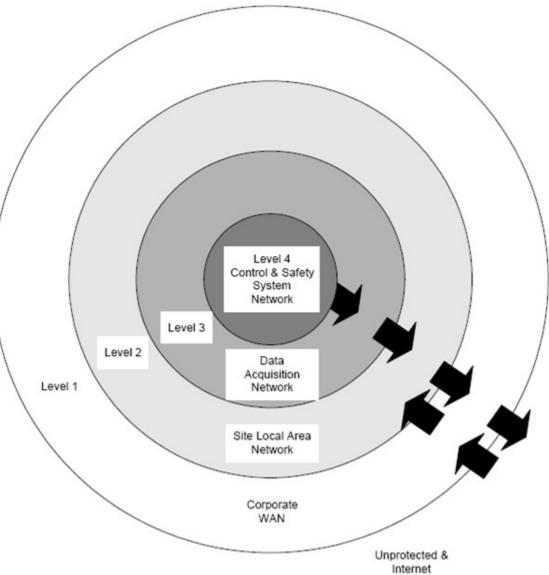
High Level Design Principles

Integrity First


- Information flows out and not in to higher security levels
 - Data acquisition and export occur per design
 - No changes or traffic allowed into high critical systems
 - Authorized personnel in controlled area make authorized changes in accordance to procedure

High Level Design Principles

This is only a model


- Industrial design prioritizes safety, with redundant communication paths and direct connections
 - This includes dual-homed machines that connect **directly** to higher security levels
 - Remote connections, direct data connections, maintenance arrangements, EP, vendors, regulators
- A model not uniformly enforced is therefore partially and locally effective

High Level Design Principles

This brings unique challenges

- Observation of Cyber Actions harder than physical actions
 - Non obvious, asymmetrical, complex, counterintuitive technology
 - Security monitoring is best effort, slow to develop and implement, disruptive, and lags behind attackers
- Unique identification of Actors is not common or simple
 - Shared accounts, points of failure, compartmentalization
 - Justified safety bias, conservative decision making
 - "Shared nothing authentication"

Areas of Proposed Focus

- Passive Monitoring: with minimal impact to an industrial network, a replica of network traffic can be obtained, deduplicated, and studied out-of-band
- Using network taps, a new out-ofband security and operations management layer can be proposed.
- This enables troubleshooting, problem analysis, and security

- Statistical Monitoring: Actions in a controlled network are Self Similar. Anomalies to normal patters may indicate unauthorized activities
- Network Behavior Anomaly Detection (NBAD) and User Entity Behavior Analysis (UEBA) are very useful tools to detect security AND operational problems

Areas of Proposed Focus

- Non-Repudiation: Genuine, high confidence authentication and identification
- Computer actions must be uniquely linked to an **identifiable actor** if they are to leverage other security controls
- Single actor behaviors must be linked to actions and changes across different security levels to find patterns of anomalous behavior
- Multifactor authentication ideal for security but cannot be attempted in one go. Propose use of PKI based access cards with PIN

- Application Whitelisting: Procedures, training and software to include software runtime authorization in the configuration management program
- All application execution should be controlled to block **new software** that is unauthorized from running
- This is the single most significant mitigation in most environments and tops the ACSC list of strategies to mitigate cyber incidents

Summation

- Safety is the overriding concern; security done right only supports and promotes safety. Industrial environments are unique, and nuclear more so. The approach to security must be informed by the nature of the work.
- 4 mitigations are proposed which take advantage of the special nature of industrial environments
 - Passive Out-Of-Band Monitoring
 - Statistical Baselining and Monitoring
 - PKI access for IT Authentication (across levels)
 - Application Whitelisting

• "There is no quick fix. There is no instant pudding." –W. E. Deming

Thank you!

Questions, Remarks, Suggestions?