20RS

Office of Radiological Security Protect · Remove · Reduce

Radiological Risk Reduction through Cesium Irradiator Replacement in the United States Aaron Galvan

PNNL-SA-141512

Office of Radiological Security

Enhance global security by preventing high-activity radioactive materials from being used in acts of terrorism.

PROTECT

Protect radioactive sources used for vital medical, research, and commercial purposes.

REMOVE

Remove and dispose of disused radioactive sources.

REDUCE

Reduce the global reliance on high-activity radioactive sources by promoting the adoption and development of non-radioisotopic alternative technologies.

What Are "Alternative Technologies"?

Technologies which do not contain radioactive materials that perform an equivalent (or better) function as a comparable device

Commercially available, non radioisotopic alternatives exist for most major applications of highly radioactive materials.

Application	Typical Isotope	Commercially Available Alternatives?
Blood Irradiation	Cs-137	Yes: X-ray —3 FDA-approved devices Partial: UV Pathogen Reduction — FDA approval for platelet & plasma systems, ongoing R&D for red blood cell systems
Research Irradiation	Cs-137 Co-60	Partial: X-ray Irradiators for most research applications
External Beam Radiotherapy	Co-60	Yes: Linear Accelerators (LINACs)
Industrial Sterilization	Co-60	Yes: X-Ray, E-beam, LINACs
Well Logging	Am-241 & Cs-137	Incomplete: Am-241 - alternatives available, Cs-137 – ongoing R&D
Radiography	lr-192	Yes: X-ray

What is Blood/Research Irradiation?

Blood – To prevent Transfusion Associated Graft Versus Host Disease (TA-GVHD) by irradiation of cellular blood products.

Research - Irradiators are used to study the effects of radiation on biological samples

- Currently 3 FDA approved X-ray blood irradiators in the U.S.
 RadSource, Best Theratronics, and Hitachi
- Currently at least 10-20 research irradiator models available with a range of capabilities and prices
- Comparison Study: Mount Sinai Experience in Migrating from Radioactive Irradiators to X-Ray Irradiators for Blood and Medical Research Applications

Cesium Irradiator Replacement Project (CIRP)

- Removal of disused Cs-137
- Incentives for replacement with X-ray
- Permanent risk and cost reduction
- User benefits
 - Much less security hassle/cost
 - Consistent throughput
 - Potentially additional capabilities

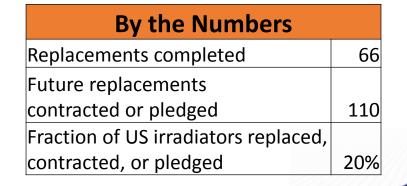
Overview of CIRP

Purpose of the program is to gauge interested sites with a Cs-137 device(s) and replace with X-Ray technology.

Qualified selected sites receive:

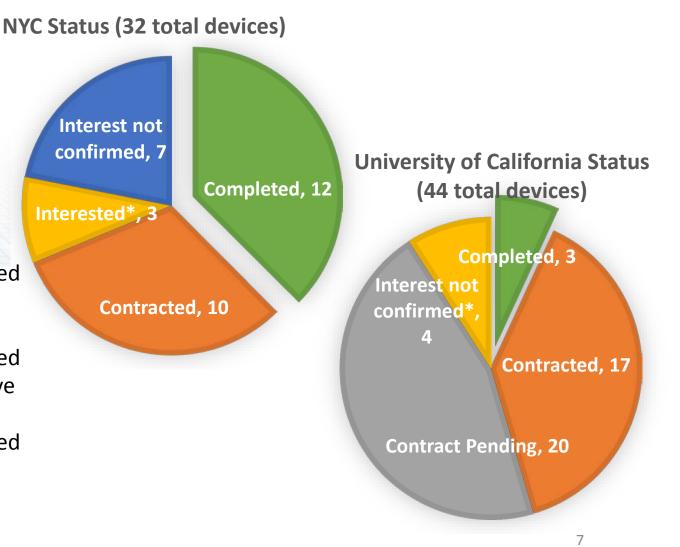
- Removal of the Cs-137 device through Off- site Source Recovery Program (OSRP).
- A financial incentive towards the purchase price of an X-ray machine.
 - Payable upon procurement of the X- ۲ ray device and disposition of the Cs-137 device.

Qualified selected sites are responsible for:


- Signing an ORS disposition/volunteer statement.
- Identifying which device to procure.
- Purchasing the device.
- Coordinating the device delivery, installation and commissioning.
- Registering their Cs-137 device on the OSRP website.

Reminders

- ORS largely stays out of the device selection process **Do not procure an X-Ray device until you are under contract**



Irradiator Replacement is Trending in the U.S.!

New York City

- 75% of irradiators are expected to be replaced/removed
- Partners: NYC regulator, Nuclear Threat Initiative University of California
- 90% of irradiators are expected to be replaced/removed
- Partners: UC President's office, Nuclear Threat Initiative Atlanta
- 66% of irradiators are expected to be replaced/removed
- Partners: Emory University, Nuclear Threat Initiative American Red Cross
- 13 irradiators are expected to be replaced/removed

Congressional Support for Permanent Risk Reduction

- The FY19 National Defense Authorization Act sets the goal of eliminating cesium blood irradiators in the US by the end of 2027.
- This is a <u>voluntary</u> effort for owners of <u>blood</u> irradiation devices.
- Our ability to meet the 2027 goal is dependent on continued funding and volunteers.
- The Authorization Act supports the established CIRP incentive structure and process

Aaron Galvan

Project Manager Office of Radiological Security Pacific Northwest National Laboratory <u>Aaron.Galvan@pnnl.gov</u> 509-372-4997