
DISUSED SEALED RADIOACTIVE SOURCES DISPOSAL IN FRANCE

Meeting on Security of Disused Radioactive Sources

Vienna, October 9th 2019

Andra : Flavien TETART

Andra French radioactive waste management organization

Independent from the waste generators

Placed under the supervision of the ministers in charge of Research, Energy and the Environment

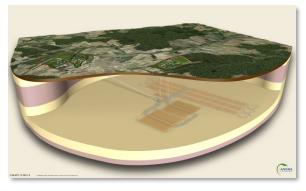
Responsible for the long-term management of all radioactive waste produced in France

It involves about 650 employees (2/3 engineers and managers) and a budget of 325 $M {\ensuremath{\in}}$

Funding: mainly by radioactive waste producers on a commercial basis for waste packages delivered to our sites, or through a tax the geological disposal R&D

The Planning Act of 28 June 2006 concerning the sustainable management of radioactive materials and waste provides the framework for Andra's action

Andra's main facilities



VLLW disposal « CIRES »

- Disposal capacity: 650.000 m³
- o Mainly dismantling waste
- No clearance level in France
- + activities in support of non electronuclear waste generators

- LILW disposal « CSA »
- Disposal capacity: 1.000.000 m³
- o ILW: only short live
- Mainly exploitation waste from nuclear power plants
- Capacity sufficient for the current NPP fleet

Project Cigéo : HLW & ILW disposal

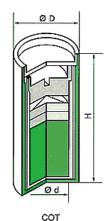
- o 2 quarters ~ 500 m depth
- o Disposal capacities
 - ILW: 75.0000 m³
 - HLW: 10.0000 m³
- Underground laboratory in operation
- Commissioning ~ 2030

3

Context and strategy for DSRS disposal

Context

• Integrated to the National plan on management of radioactive materials and waste (PNGMDR)


Interim storage (Cisbio)

DSRS inventory

Estimation between 2 and 3 millions of DSRS

- \circ Most of them are smoke detector sources
- From exempted calibration sources to ⁶⁰Co and ¹³⁷Cs high activity sources

But very few volume compared to disposal capacities !

Forecasts for the first decade (including accumulated stocks):

Disposal route	Type of disposal package	Number of packages (stock)	Number of packages (traffic in 10 years)	Total number of packages	Total volume of packages in repository (m3)		Disposal capacity [m³]
VLLW	Basket 1 m3	6	17	23	23		650.000
LLW/ILW – SL	Package 5 m3	31	21	53	265		
ILW-LL	Package 870 I	78	61	139	121		1.000.000
(CIGEO) or LLW-LL	CSM packages stored by CEA	41	0	41	123		75.000.000
HLW-LL	CDT 175 I	6	1	7	1,2	-	10.000.000

D2I/SI/19-0056

Radioactive sources - Regulatory framework

Public health regulation: distribution, use, return to supplier, ...

o National SRS inventory kept by IRSN : import/export, distribution, return, ...

• For in-use SRS -> Not an inventory of DSRS

o Users have to organise and pay the return of DSRS

 Suppliers distributing in France have to provide a return service and manage safely DSRS: return to supplier/manufacturer, recycling, disposal

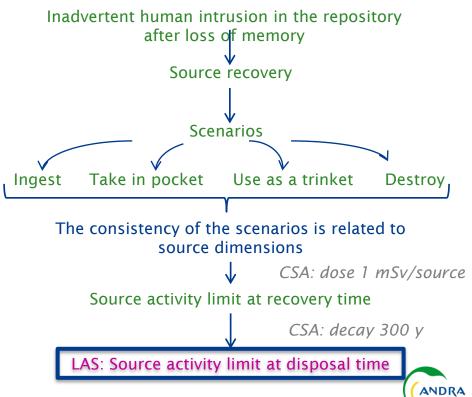
o Financial guarantee

Environment regulation: disposal

 \circ DSRS condidered as waste when the decision of disposal is made

- Supplier/manufacturer become a waste producer
- \circ No specific regulation for DSRS compared to other radioactive waste
 - Just an exception to enable import and export for return to supplier

o Waste producer is responsible for characterization, conditionning, cost,

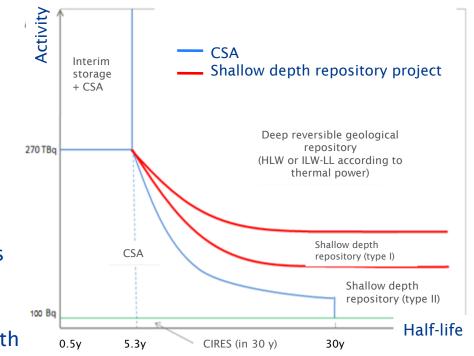


Specificities of DSRS for disposal

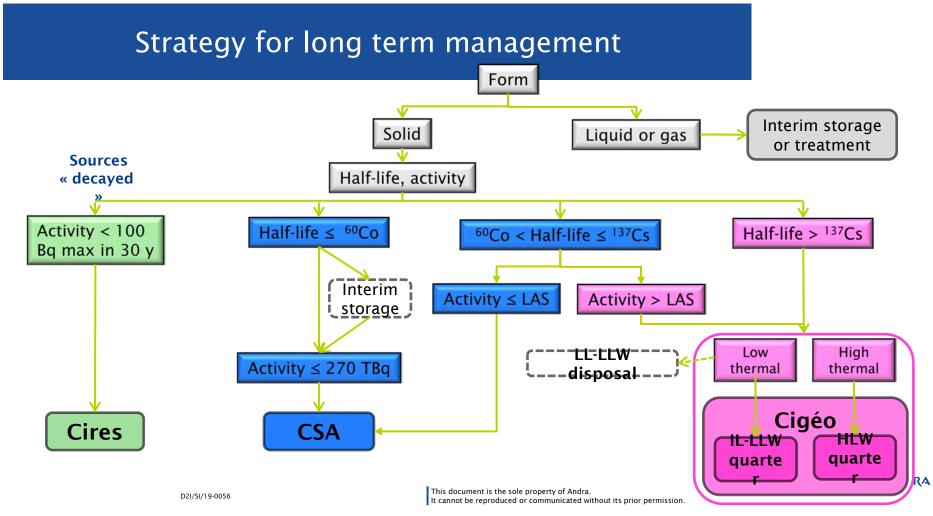
Compared to other radioactive waste, DSRS present two specificities for disposal:

- In operation: "hot points" for exposure in case of accidental situations (fall, ...)
- In post-closure: risk of recovery in case of inadvertent human intrusion
 - Sources are potentially attractive and durable

Strategy for long term management


Use of existing or planned repositories

Choice of the suitable repository driven by the **activity / half-life** couple, considering **post-closure safety**:


- Cires for totally decayed sources after institutional control period (30 y)
- \circ **CSA** for short life sources (T_{1/2} < 30 y) if residual activity after institutional control period (300 y) complies with safety scenarios

o Cigéo in other cases

 In optimization, LL-LLW shallow depth repository for long life sources complying with safety scenarios

Near surface disposal CSA and Cires

DSRS disposal in CSA (LLW repository)

Since 2007, CSA has started disposal of short lived sources

Examples of sources dealing with the CSA:

⁶⁰Co with package activity ≤ 270 TBq
Ex: ⁶⁰Co cat 1&2 sources after decay
⁹⁰Sr with source activity ≤ 8 MBq
¹³⁷Cs with source activity ≤ 22 MBq

Main acceptance criteria specific to sources:

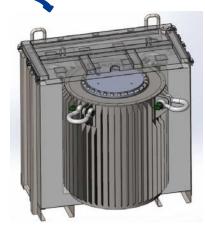
- \circ Half-life \leq 30 years
- \circ Operational safety: package activity \leq 270 TBq
- \circ Post-closure safety: source activity \leq RN-dependant limits (LAS)
 - No LAS for ⁶⁰Co (decay sufficient)

DSRS disposal in CSA (LLW repository)

Some values of LAS for the CSA :

	Half life	Small size		Medium size		Large size	
Rn	(y)	LAS (Bq)	Main scenario	LAS (Bq)	Main scenario	LAS (Bq)	Main scenario
¹³³ Ba	11	2,55.10 ¹³	Ingest	6,79.10 ¹³	Pocket	6,78.10 ¹⁴	Destruction
¹⁵² Eu	13	1,36.10 ¹¹	Ingest	1,49.10 ¹¹	Pocket	1,49.1011	Destruction
⁹⁰ Sr	29	8.18 10 ⁶	Pocket	8.18 10 ⁶	Pocket	8.16 10 ⁷	Destruction
¹³⁷ Cs	30	2.19107	Pocket	2.19 107	Pocket	2.19 10 ⁸	Destruction

Half-life \leq 5,27 years (⁶⁰Co): no LAS



DSRS Disposal in CSA (LLW repository)

Example: ⁶⁰Co sources returned to CEA/Cisbio:
Dismantling of devices in hot cells by CEA/Cisbio
Sources collected in stainless capsules
Disused transport package used for radiological shielding
Cemented 5m³ packages produced on disposal site

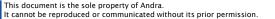
D2I/SI/19-0056

DSRS Disposal in CSA (LLW repository)

Operations started in August 2019

DSRS Disposal in **CSA** (LLW repository)

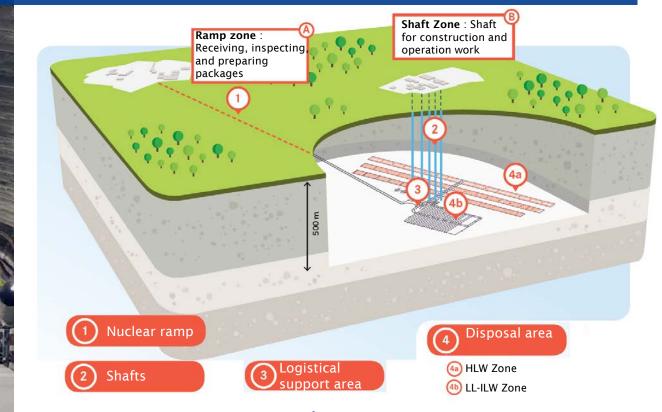
DSRS disposal in Cires (VLLW repository)


Since 2013, Cires has started disposal of DSRS

- \circ Activity < 100 Bq after 30 years decay for most RN
 - Arbitrary but conservative, even in the worst scenario
- o In practice, only decayed sources
 - Short-live source : ⁵⁷Co, ⁶⁸Ge, ...
 - Ex: ⁵⁷Co sources for imaging calibration
- No specific packaging

D2I/SI/19-0056

17



Deep Geological disposal

Project Cigéo

Overview of Cigéo facilities

D2I/SI/19-0056

Safety in Cigéo

Operational safety:

- DSRS packages managed like other radioative waste packages
- o Automated process, few human interventions
- o Containment provided all along the process
- o Make handling operations safe : rail transfer, funicular. ...

Post-closure safety:

Recovery of DSRS is unlikely (depth ~ 500 m)
No criteria for limiting activity of DSRS

DSRS packages characteristics are included in the set of other waste packages

-> No specific design or criteria for the disposal of DSRS packages


Examples of DSRS packages for Cigéo

<u>Cigéo ILW</u> (eventually LL-LLW repository)

For low thermal DSRS not allowed at CSA

- Ex : ²³⁹Pu, ²⁴¹Am, ²²⁶Ra, smoke detectors sources, neutron sources, RTG, ...
- $\,\circ\,$ Sources collected in stainless boxes
- « Multi-purpose » 870 L cemented package designed for both Cigéo ILW quarter or LL-LLW repository
- Adapted for devices which cannot be dismantled (Alcyon, RTG, ...)

This document is the sole property of Andra. It cannot be reproduced or communicated without its prior permission.

Cigéo HLW

For high thermal DSRS

- Ex: ¹³⁷Cs HA sources
- Sources collected in stainless capsules
- 200 L welded package designed for Cigéo HLW quarter

Conclusion

For Andra's repositories:

\circ Specific criteria for near surface disposal

- Especially for taken into account recovery scenarios
- \circ DSRS are considered as standard radioactive waste in Cigéo
 - No specific criteria

In France, in operation or planned repositories for other radiaoctive waste are sufficient for the disposal of DSRS

- o Very small volumes compared to other radioactive waste
- No need of specific repository for DSRS in France
 - Strategy adapted to an electro-nuclear country. Other strategies exist in different countries (boreholes, ...).

Thank you for your attention

Time for questions

Flavien TETART flavien.tetart@andra.fr

