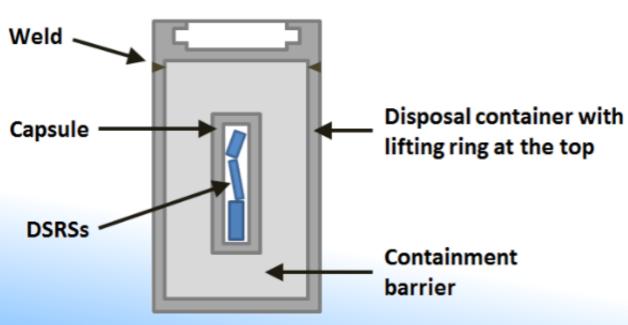


The IAEA Coordinated Research Project on borehole disposal

Philippe Van Marcke

Security of Disused Radioactive Sources 8 – 9 October 2019, Vienna, Austria

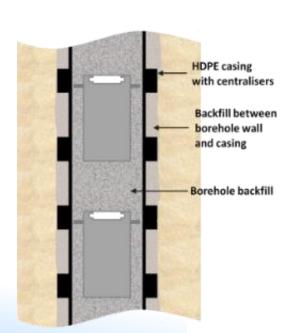

Reference design

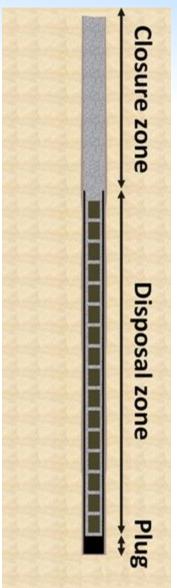
DSRSs are placed in waste packages

capsule 316L stainless steel

containment barrier cement grout

container 316L stainless steel



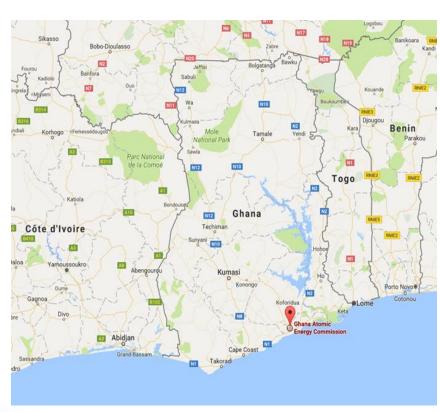


Reference design

- waste packages are lowered into a disposal borehole which has an HDPE casing and which is backfilled and closed
 - closure zone
 - disposal zone
 - cemented bottom plug

Malaysian Nuclear Agency

 12.928 sources (among which 10.241 Am-241 sources mainly from smoke detectors) contained in 60 capsules with a total activity of ca. 32 Ci or ca. 1 TBq


- disposal site at Malaysian
 Nuclear Agency (32 km south of Kuala Lumpur)
- the license for this borehole disposal project was obtained in July 2019 and disposal is planned for 2020

Ghana Atomic Energy Commission

- 256 sources contained in 13 capsules with a total activity of less than 900 Ci or 33 TBq
- disposal site at the Ghana
 Atomic Energy Commission
 (near Accra)
- GAEC is currently preparing a license application

Support provided by IAEA

Training and capacity building covering

- safety assessment and application of safety assessment software
- implementors how to develop a safety case for DSRS borehole disposal
- how to draft regulations for borehole disposal
- regulators on safety case evaluation

Support provided through IAEA

Equipment and tools

- Mobile Tool Kit, including transfer casks, for conditioning and disposal of category 3-5 sources
- integration of the NECSA Mobile Hot Cell in the concept for conditioning and disposal of category 1-2 sources

These pilot projects have crystallised wide interest in the borehole disposal concept for DSRS and small quantities of low- and intermediate-level radioactive waste.

6 countries commencing the path to implementation of DSRS borehole disposal in the coming years	14 further countries that have expressed an interest in the concept	At least 16 further countries for which DSRS borehole disposal may be a disposal route of their DSRS
Australia Bulgaria Canada Indonesia Iran South Africa	Azerbaijan Bosnia and Herzegovina Brazil China Croatia Cuba Israel Lithuania Montenegro Pakistan Romania Russian Federation Tanzania Turkey	Albania Cambodia Egypt Ethiopia Iraq Jordan Lebanon Libya Macedonia Mongolia Myanmar Nepal Philippines Serbia Sri Lanka Tunisia

- To support future borehole disposal projects, it is proposed to develop a standardised framework for the borehole disposal of DSRS and small quantities of low- and intermediate-level waste other than DSRS.
- The goal of such a standardised framework is to develop a consistent, comprehensive and robust package of scientific and technical data, along with guidance, information, tools and training across all of the borehole disposal programme that can be licensed and implemented for a wide range of DSRS inventories and geologies.
- This will reduce the need for each Member State to develop all materials from first principles and make the borehole disposal option more readily licensable and implementable.

- 1. Preparing for a borehole disposal project
- 2. The design and engineering behind the disposal concept
- 3. Scientific and technical basis of the disposal concept
- 4. Site selection and characterisation
- 5. A safety case for the disposal concept
- 6. A security plan for the disposal concept
- 7. Regulating the disposal project

In addition, training material about all those components will be developed. The development of those training packages will be managed by the Agency.

- Coordinated Research Projects (CRPs) have been designed to stimulate and coordinate the undertaking of research in selected nuclear fields by scientists in IAEA Member States. They are targeted to make a clear contribution towards greater understanding or resolution of a specific issue or problem.
- Participating organisations are:
 - > ANSTO & CSIRO, Australia
 - > CNEN, Brazil
 - > IPEN, Brazil
 - > BNRA, Bulgaria
 - > SERAW, Bulgaria
 - > AECL, Canada
 - > CNL, Canada
 - > CNSC/CCSN, Canada

- > CIRP, China
- ANDRA, France
- BGE, Germany
- ➤ BAPATEN, Indonesia
- > BATAN, Indonesia
- Norwegian Nuclear Decommissioning, Norway
- > NRWDI, South Africa
- > SANDIA NL, USA

Planned activities

February 2020

IAEA Consultancy Meeting cementitious components of the borehole disposal concept

May 2020

Research Coordination Meeting Year 1 and workshop on "The feasibility and operational aspects of borehole disposal"

May 2021

Research Coordination Meeting Year 2 and workshop on "Safety concept and assessment of borehole disposal"

May 2022

Research Coordination Meeting Year 3 and workshop on "Siting a borehole disposal facility"

Thank you