

Nuclear Safety and Security

M. Sai Baba

TV Raman Pai Chair Professor National Institute of Advanced Studies msaibaba@nias.res.in / msaibaba57@gmail.com

WINS Academy Training Course on "Integrated Nuclear Safety and Security Culture" In cooperation with Amity University and Oak Ridge National Laboratory 26-28 September 2019

<u>Energy</u>

Seek to attain energy independence and promote efficient utilization

Environment

Conserve and minimize the impact on the environment

Economy

Enhance the national economic development through the use of technology

<u>Society</u>

Improve the quality of life for all

Our World

The population is likely to grow to about ten billion by the end of 2050 and the climate changes are threatening to deprive the under-privileged more than those who are doing well in the world.

Human Development Index & Electricity Consumption

Electricity Consumption (kWh/person.year)

Motivation for More & Clean Energy > Better quality of life

Energy defines the index of quality of life

Energy defines the index of quality of life. But has to meet many challenges

The Energy Outlook

Overview

Primary energy consumption by fuel

Carbon emissions

Billion tonnes CO_2

*Renewables includes wind, solar, geothermal, biomass, and biofuels

2018 BP Energy Outlook © BP p.l.c. 2018

The Energy Outlook

Sectors: Power

The world continues to electrify...

Shares of total power generation

2018 BP Energy Outlook © BP p.l.c. 2018

Year Incident Location Fatalities Rana Plaza, Collapse of building 2013 Savar, Bangladesh >1100 containing several factories 1984 42 tons of lethal methyl isocyanate Bhopal, India 2259 (immediately) ~ 25000 believed to have leak, Union Carbide pesticide plant died since due to exposure Coal dust and gas explosion in a mine Benxi Liaoning, 1942 1549 China Prypiat, Ukraine 1986 Chernobyl NPP 31 : radiation 3,940: radiation induced cancer and leukemia 1947 Fire near 2300 tons of Ammonium Port of Texas City, 581 Texas, USA nitrate on S.S. Grandcamp causes explosion Explosions at a Liquid Petroleum Gas San Juanico, Mexico 1984 500 tank farm 1906 1099 Coal dust explosion Courrieres, France 1976 ICMESA, a chemical manufacturing Seveso, Italy 3300 farm animals plant, releases dioxins (TCDD) 80000 animals later slaughtered Prince William 100000 - 250000 1989 Exxon Valdez,:oil tanker, spills 260 thousand barrels crude into sea Sounds, Alaska, USA Seabirds

Worst Industrial Accidents in History

Source: Wikipedia

Nuclear Incidents/Accidents

Date	Location	Description	Fatalities
January 3, 1961	Idaho, US	Explosion at SL1 prototype at the National Reactor Testing Station.	3 All three operators were killed when a control rod was removed too far
January 5, 1976	Jaslovské Bohunice, Czechoslovakia	Malfunction during fuel replacement. Fuel rod ejected from reactor into the reactor hall by coolant (CO ₂)	2
March 28, 1979	Three Mile Island, Pennsylvania, US	Loss of coolant and partial core meltdown due to operator errors. There is a small release of radioactive gases. See also Three Mile Island accident health effects.	0

Nuclear Incidents/Accidents

Date	Location	Description	Fatalities
April 26, 1986	Chernobyl, Ukraine	explosion and meltdown, necessitating the evacuation of 300,000 people from Chernobyl and dispersing radioactive material across Europe	31 direct [19 not entirely related and 15 minors due to thyroid cancer] UNSCEAR UN_Scientific Committee on the Effects of Atomic Radiation
September 30, 1999	Ibaraki Prefecture, Japan	Tokaimura nuclear accident	2 1 exposed beyond permissible limits

UN established Chernobyl Forum involving 7 UN agencies including WHO, UN Environment Programme and IAEA. In 2006, 20 years, later the forum concluded, the total death toll of 56 out of which 34 died fighting the fire.

Nuclear Incidents/Accidents

Date	Location	Description	Fatalities
August 9, 2004	Fukui Prefecture, Japan	Steam explosion at Mihama Nuclear Power Plant	4
March 11, 2011	Fukushima, Japan	 Tsunami flooded and damaged the plant's 5 active reactors, Drowning two workers. One man died suddenly while carrying equipment during the clean-up 	2+ (over 1,600 excess deaths due to evacuation)
September 12, 2011	Marcoule, France	One person was killed and four injured, one seriously, in a blast at the Marcoule Nuclear Site. The explosion took place in a furnace used to melt metallic waste	1

Aggregate Fatalities : Energy options

(also given is normalised Fatalities)

Energy Chain	No. of Accidents	Total Fatalities	Normalised Fatalities/GWa
Coal	1221	25107	0.876
Coal ^a	177	7090	0.690
Oil	397	20283	0.436
Natural Gas	125	1978	0.093
Hydro	11	29938	4.265
*Hydro-2	10	3938	0.561
Nuclear	1	56	0.006

No change in fatalities after Fukushima

during 1969-2000

^a Excluding China

*Excluding the Banqio/Shimantan dam burst which resulted in 26000 fatalities

HRP:

although not a prediction of human behaviour, an excellent tool for decision making should compliment security and improve employee quality The HRP is a security and safety reliability program designed to ensure that individuals who occupy positions affording access to certain materials, nuclear explosive devices, facilities, and programs meet the highest standards of reliability and physical and mental suitability

Human Reliability Program Handbook: Department of Energy

periodic HRP audit

Drug/alcohol rehabilitation	On-going education and training	Recognition of aberrant behaviour
Drug/alcohol screen	Polygraph	Psychological evaluation
Management Evaluation	Background Checks	Occupational Health examination

Human Reliability Program

Technology

Automation

Automation: Integration of machines into a self-governing systems

Automation has revolutionized wherever it was introduced, There is scarcely an aspect of modern life that has been unaffected by it

Automation bias: Propensity for the humans to favor suggestions from automated decision making systems and to ignore contradictory information made without automation even when it is correct

Major concern in aviation, medicine, process control, and military command and control operations.

Developing AI : How do we select reliable individuals to develop AI applications? If once the algorithm is biased it stays that way until it is realised that it is biased

> Al systems are reflecting the existing prejudices in the system, Instead of eliminating them.

management evaluation appropriate background investigative requirements occupational health examination and laboratory testing drug/alcohol screening psychological testing and interviews polygraph examination job related aberrant behaviour recognition on-going education and training document control drug/alcohol rehabilitation

Symptomatic?

Can we go beyond?

Afterall we are trying to understand us? Isn't it the real challenge? Understand and Accommodate Diversity Can We?

Attributes of Nuclear Technology

- Nuclear technology is knowledge intensive
- Needs well trained Human Resource and strong industrial infrastructure for its exploitation
- Needs synergistic pursuit of basic research and technology development
- Needs Multi-Disciplinary approach to problem solving
- Requires safety analyses encompassing the entire gamut of engineering issues

Hire and train approach – to produce Industry Ready Human Resources Practicing professionals as faculty – Tacit , Explicit and Implicit Knowledge is transferred

Closed Fuel Cycle: 3 Stage program

Thermo-chemical Investigations on Nuclear Materials

Driving force for these interactions? Reason for a particular interaction becoming dominant ?

Interactions guided by Relative Thermodynamic stabilities

Fuel-Fission Product-Clad Interaction

Complexity of Irradiated Fuel Systems lies in the continuous change in the amounts of the constituents

Importance of a particular equilibrium gets altered depending upon the extent of accumulation fission products

Host of Thermo-chemical Properties needs to be obtained

Fuel-Clad Chemical Interaction in Mixed Oxide Fuels

Post-irradiation examinations

- Broad based matrix attack as well as IGA
 the largest crack or penetration ~ 1/3 of clad thickness
- Fission products at the fuel-clad interface and in the grain boundaries of the cladding material - Cs, I, Te, Mo, Pd
- Clad components in the fuel matrix

 transport into or onto the fuel

Radial concentration profiles of uranium and plutonium in the fuel and of iron in the cladding and in the metallic precipitates Microstructure of the attacked s.s cladding showing Fe-Cr-Cs-I-Te-0 phases (dark grey) and metallic Mo-Ni precipitates.

O. Götzmann, H. Kleykamp / Post irradiation examination of simulated fission product

- clad safe with stoichiometric and sub-stoichiometric fuel inference applicable to reactor system?
- clad compatible with pure Cs (i.e. without oxygen impurity); attack takes place in presence of O or moisture
- shallow or negligible clad attack with pure Te

Cs, I, Te, Mo, Pd and Oxygen

Homogeneity ranges of non-stoichiometric metal Tellurides

T.S. Lakshmi Narasimhan, M. Sai Baba, R.Balasubramanian, S. Nalini and R. Viswanathan J.Chem. Thermodynamics 34(2002) 103-117

Homogeneity ranges of non-stoichiometric metal Tellurides and Thermodynamic data

		Homogeneity range		$\Delta_{\rm f} {\bf G}^{\circ}$ (kJ/mol)	
System	Phase	Formula		at 298	.15 K
		M-rich	Te-rich	M-rich	Te-rich
Fe-Te	FeTe _{1-x}	FeTe _{0.81}	FeTe _{0.94}	-21.1	-29.7
Cr-Te	CrTe _{1-x1}	CrTe _{1.03}		-70.3	
	CrTe _{1-x2}	CrTe _{0.93}		-55.7ª	
Mo-Te	Mo ₃ Te ₄	MoTe _{1.1}	MoTe _{1.3}	-65.4	-67.0
Mn-Te	MnTe _{1-x}	MnTe _{0.8}		-90.0	
Mn-Te-O	Mn ₆ Te ₅ O ₁₆			-2835.4 ^b	

Tellurium induced clad attack in mixed oxide fueled FBRs

At the Fuel-clad interface

O/M	Δμ (O₂)/(kJ/mol)	Δ μ (Te)/(kJ/mol)		
0/11	21 % Pu	27 % Pu	21 % Pu	27 % Pu	
1.9998	- 565.0	-556.6	-238.9	-230.6	
1.9999	-553.4	-545.1	-227.4	-219.0	
2.0000	-450.9	-444.1	-124.8	-118.0	
2.0001	-348.3	-343.1	-22.3	-17.0	
2.0002	-336.8	-331.5	-10.8	-5.5	

Tellurium induced clad attack in mixed oxide fuelled FBRS						
At the cl	lad		[M] _{ss} /MTe _x			
[Δμ (Te)]_{clad} at 1000 K						
	ЪЛ	a(M)		Δμ (Te)k	J/mol)	
	IVI	SS 316	D-9	SS 316	D-9	
	Formation of MTe _x					
	Fe	8.52x10 ⁻¹	8.79x10 ⁻¹	-30.7	-31.0	
	Cr	3.11x10 ⁻¹	2.36x10 ⁻¹	-54.0	-51.8	
	Ni	6.15x10 ⁻¹	6.03x10 ⁻²	-44.9	-14.4	
	Мо	3.99x10 ⁻²	6.56x10 ⁻²	-17.4	-21.2	
	Mn	1.45x10 ⁻²	8.49x10 ⁻³	-71.4	-65.8	

Thermodynamic modelling

Tellurium induced clad attack mixed oxide fueled FBR

At the clad $[M]_{ss}/MTe$ At the Fuel-clad interface $Cs_2Te/MO_{2\pm x}/Cs_2MO_4$ $[M=U_{0.75}Pu_{0.25}]$ Fuel : hypo-stoichiometric stoichiometric and hyper-stoichiometric

Te-attack is likely in the case of hyper-stoichiometric fuels MnTe likely telluride to be formed

Study of M-Te-O systems (M: SS component)

Tellurium potential required for the formation of binary metal tellurides will exist when the O/M of the mixed oxide becomes >2.000

Threshold chemical potential of Te $[\Delta \mu(Te)]_{clad}$ for $M_z Te_x O_y$ formation: $[\Delta \mu(Te)]_{clad}$ calculated as per the equilibrium $z [M]_{SS} + x [Te] + (y/2) [O_2] = M_z Te_x O_y(s)$

The tellurium potential required for the formation of MnOrich Mn-Te-O compound, $Mn_6Te_5O_{16}$, was calculated to be -9 kJ/mol at 900 K. This Te-potential is likely to prevail in the fuel-clad gap for fuel with O/M>2.000.

Studies on Sodium Fire

Sodium Concrete Interactions:

Qualification of sodium resistant concrete for Reactor application

Development of advanced clad and wrapper materials

Parameter	Current	Stage-1	Stage-2	Satege-3	Stage-4
Target Burnup GWd/t	100	< 150	> 150	200	200
Fuel	Oxide	Oxide	Oxide	Oxide	Metallic
Clad material	D 9	IFAC-1 (D9I)	IFAC-1 (D9I)	F-M ODS steel	F-M ODS steel
Wrapper material	D 9	IFAC-1 (D9I)	T9 F-M steel	T9 F-M steel	T91 F-M steel
Linear power, W/cm	450	450	450	500	> 500

Development of structural materials

Material	Application
316 LN (0.14N)	Reactor vessels
T23, T24, T91BN	Steam generators

Development of Neutron Fluence Monitors

Variation of (10B/11B) as a function of fluence

Development of Neutron Fluence Monitors

Why Environment is so important

As we watch the sun go down, evening after evening, through the smog across the poisoned waters of our native earth, we must ask ourselves seriously whether we really wish some future universal historian on another planet to say about us:

"With all their genius and with all their skill, they ran out of foresight and air and food and water and ideas"

or

"They went on playing politics until their world collapsed around them"

U Thant

Thank you for Your Attention