Changing Technology and Security: The Small Reactor Challenge

20-Nov-2019

Presented by: Frank Saunders, New Technology

About Bruce Power

2001

Bruce Power Formed

2013

All 8 units Operational

2015

LTEP
Agreement
with Province
signed

Today

6,300Mw Clean, Safe & Reliable

Energy through 2064

Nuclear In Canada Today

ONTARIO POWER GENERATION DARLINGTON ON

OPERATING

ONTARIO POWER GENERATION PICKERING ON

BRUCE POWER

TIVERTON ON

NEW BRUNSWICK POWER POINT LEPREAU, NB

Canada Today

Canada Today

A Changing Landscape for Nuclear

eVinci

Small Reactors

NuScale Reactor

- Scalable Designs: <2 MW(e) to 300MW(e)
- .2% 30% of nominal reactor unit
- Simple
- Greatly Enhanced Public Safety
- Many New Markets
- Fast Decommissioning
- No carbon

and Portable

eVinci

Deployment Platforms

NuScale

Likely Deployment in Canada

- Smaller Canadian Markets:
 - Small Cities (Small Grid)
 - Natural Resource Extraction
 - Northern Communities
- Variety of energy uses:
 - Electricity
 - Process Steam
 - Heating Steam

Deployment in Canada

The Challenges:

- Remote locations
- Scalable, one solution doesn't fit all
- Much smaller cash flows
- Current industry approach to security not feasible

What about other industries?

San Bruno Gas Explosion


- Thousands evacuated
- 35 homes destroyed, many damaged
- Victim settlements alone \$565M

- 2010 Natural Gas Pipeline explosion
- San Bruno (San Francisco) CA
- 8 deaths, hundreds of injuries
- Crater 167 ft long, 40 ft deep in Glenview Drive
- Registered as 1.1 seismic event

San Bruno Gas Explosion

Toronto Propane Explosion (Sunrise)

- 2 deaths
- 19,000 evacuated for several days (asbestos contamination)
- \$1.9 M in cleanup costs and >
 \$20 M in property damage

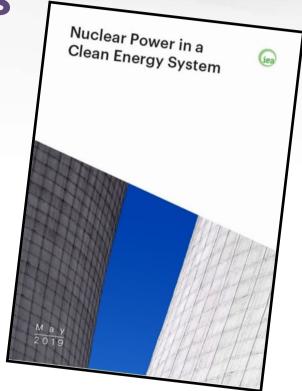
- In 2008 Downsview Ontario
- Sunrise propane plant explodes

Sunrise Explosion

East Village Gas Explosion - NY

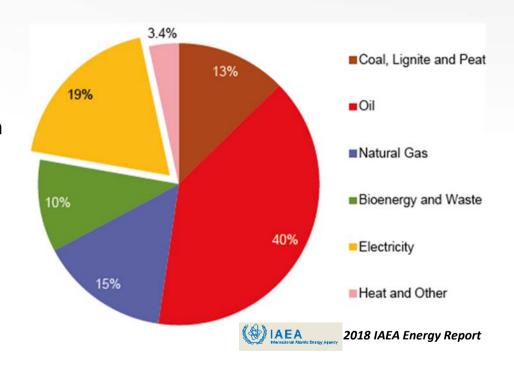
- 19 injured, 2 dead, 3 Bldgs destroyed
- Caused by tampering

 March 26, 2015 in the East Village of Manhattan


Need and Urgency

The Challenge Before Us

World demand for energy is impacting the ability to achieve environment and climate change goals:


- Need to reduce fossil fuel consumption coal, gas, diesel
- No single energy solution = more nuclear must be part of the mix to enable renewables and other new energy forms

2019 International Energy Agency report "Nuclear Power in a Clean Energy System"

The Need for Clean Energy

- ☐ Globally ~ 130,000 TWh total energy consumption:
 - Electricity 19% ~ 25,000 TWh
 - Fossil fuels ~ 70%
 - Bioenergy and waste ~ 10%
- Electricity consumption rising on average 571 TWh each year

Current Options

- Globally ~130,000 TWh total energy consumption
- Currently only about 1/3 of new generation is low carbon.
- Carbon levels continue to increase world wide.
- 570 TWh of new clean electricity required each year to maintain current carbon emissions levels.
- This is equivalent to addition of 1000 MW clean energy power plant every 5 days.
- Net zero carbon by 2050 requires 1000 MW every day plus retirement of equal amount of carbon emitting sources.
- Canada's 80 Mt carbon equivalent emissions reduction shortfall to 2030 target can be achieved by replacing coal generation with nuclear

570 TWh from Modern Sources	
Wind	 Intermittent - Capacity Factor 37% ~56,800 - 3 MW units Land usage - <u>18,460</u> sq. miles
Hydro	 Partially Intermittent - Capacity Factor -% Land usage - <u>34,945</u> sq. miles
Solar	 Intermittent - Capacity Factor 26% Land usage - 3,195 sq. miles
Nuclear	 24/7 - Capacity Factor 93% 71 -1000 Mw units Land usage - 1,442 sq. miles

Land Usage by Energy Source

We need all of them

Solar ~3,195 sq. miles

Hydro ~34,945 sq. miles

Nuclear ~1,442 sq. miles

Conclusions

- Understand actual risks in relation to other risks in society, don't look at nuclear in isolation
- Cost matters, reactor size matters, design matters
- One size solution will not fit all
- Make use of modern technology in security
- Delays in carbon reduction is itself a risk

The challenge for Regulators:

Innovation in...

Technology Safety

Regulation

